
Portfolio

Michael Jones
Bournemouth University

June 2006

Contents

1. Portfolio Objective ... 4
2. Abstract .. 4
3. Bournemouth University .. 4

3.1 The Current Climate ... 5
4. The School of Design, Engineering & Computing .. 5

4.1 Programmes in the School .. 5
5. University Facilities ... 5

5.1 Usage .. 6
5.2 Lecture Theatres ... 6
5.3 Programming Laboratories ... 6
5.4 Library and ICT support ... 6
5.5 Recreational .. 6

6. My Background in Computing and Teaching .. 7
6.1 Beliefs About Programming ... 7

7. The Computing Undergraduate Framework .. 8
8. The Programming Unit ... 8

8.1 Paradigm ... 8
8.2 The Role of the Unit in the Framework ... 9
8.3 My immediate background in teaching programming ... 9
8.4 Unit Specification ... 9
8.5 Unit Specification Commentary ... 9
8.6 VLE .. 9
8.7 Support software .. 10

9. Pedagogy .. 10
9.1 When to introduce Objects? ... 10

10. Instructional Design ... 10
10.1 Lectures .. 11
10.2 Programming Laboratory sessions ... 11

11. Assessment ... 12
11.1 Assessment regime ... 12
11.2 5 Beliefs About (Summative) Assessment ... 12
11.3 Individual or Group? .. 13
11.4 Formative assessment ... 13
11.5 Sample Summative assessment .. 13
11.6 Providing Feedback .. 14

12. Feedback on the Performance of the Unit .. 14
12.1 University mechanisms .. 14
12.2 Programme mechanisms .. 15

13. Reflections .. 15
13.1 The Environment .. 15
13.2 The Unit .. 16
13.3 My Performance ... 18

14. Final Thoughts .. 18
 Appendix A: The University ... 19
 Appendix B: Unit Descriptor .. 20
 Appendix C: Unit (Delivery) Guide .. 23

 Appendix D: Weekly Worksheet Example ... 25
 Appendix E: Sample multiple choice questions .. 27
 Appendix F: Sample Summative Assignment .. 28
 School of Design, Engineering & Computing .. 28

 Introduction ... 28
 Demonstration ... 33

 Appendix G: Demonstration Checklist ... 36
 Appendix H: Example of feedback given to students ... 37
 Appendix I: Unit Monitoring Form ... 38
 Appendix J: Student Feedback Questionnaire .. 41

1. Portfolio Objective
This portfolio was constructed in June 2006 as part of the Disciplinary Commons in
the Initial Teaching of Programming. The contents of the document form a personal
statement, and should not be seen as representing Bournemouth University in any
way.

The objective of the document is to illuminate the experience of designing,
implementing, and reflecting on the process of leading a Programming unit in an
undergraduate Computing programme.

The initial sections describe the University, the unit, and the resources. Later sections
cover the reflection on the main aspects of the unit.

2. Abstract
The first year Programming unit in the Computing Undergraduate Framework at
Bournemouth University is delivered to a cohort numbering about 75. Delivery
involves a single one hour lecture per week throughout the year, augmented by a
weekly three hour workshop for each of group of 15 students. It is assessed via a
combination of equally weighted coursework and examination.

All of the students have taken related subjects prior to joining the course, but the
nature and level of this study pertaining to programming varies considerably. In
addition, some students have pursued computing as a hobby. The result is a wide
range of ability, and a number of students with no real comprehension of what
programming involves.

This document provides descriptions of the content and context of the unit; includes
examples of documentation; and relates the experience of delivering the unit during
2005-06, the first year of the revised programme.

Innovations introduced included more use of software to speed up the production of
feedback for the students, and the use of oral feedback to provide more detail than
traditional written feedback affords.

Weaknesses observed included a lessening of student participation in the latter stages
of the year, and insufficient opportunities for feedback from students. Formative
feedback to students was also less evident than would be ideal.

3. Bournemouth University
Established as Bournemouth College of Advanced Technology in 1973, the
organisation developed rapidly in the late 1980's and early 1990's. This period saw the
name change four times in the space of six years, becoming one of the 'new'
universities in 1992.

This development saw a rapid expansion in full-time student numbers from 2,800 in
1988 to over 15,000 today (including partner colleges), of which some 10% are
postgraduate. The curriculum has also undergone a transformation. Prior to 1987, the
Dorset Institute (as it then was) focused on vocational, part-time National Diploma

Michael Jones Disciplinary Commons Portfolio - June2006 Page 4
Bournemouth University

courses and preparing students for external University of London examinations. In the
period 1989 to 1994, an average of 20 new courses were introduced each year.

The University is mostly situated on the Talbot Campus, which is actually in Poole,
hence 'Bournemouth University', not 'University of Bournemouth'. The other, smaller
campuses are based in the centre of Bournemouth.

The large majority of the students are UK nationals, drawn primarily from the M3/M4
corridor.

A selection of images of the Talbot Campus are included in Appendix A.

3.1 The Current Climate
The university has operated a tight control over financial matters, so has a smaller
deficit than many in the sector. A new Vice Chancellor took over in the summer of
2005, and has begun a programme of radical change. A voluntary severance scheme is
in place, as is a programme of recruitment for 80 PhD students. The clear emphasis
(and stated aim) is to shift the main goal to the achievement of quality research
output.

4. The School of Design, Engineering & Computing
The School of Design, Engineering & Computing (DEC) is one of six Academic
schools, and has approximately 1650 undergraduate and 100 postgraduate and
research students. Within the School, Computing accounts for approximately 50% of
all undergraduate and 40% of postgraduate students. There is also a substantial
computing presence in other schools, notably the Media School, which includes the
(RAE 5) National Centre for Computer Animation.

All the computing students and staff in DEC are based on the Talbot Campus.

The staff:student ratio in Computing within DEC is approximately 1:25.

4.1 Programmes in the School
The university has retained a programme-oriented, non-semester-based delivery of
units. A few units are shared between programmes. The typical structure of a
programme in DEC is 6 units per year for the first 2 years, with 4 units plus a double-
weighted project in the final year.

All the computing courses in the School are sandwich programmes, with a third year
spent in a related vocational role. We have had few problems placing students.

Employment of computing graduates is monitored, and typical figures are 85% of
graduates employed in computing within 5 months of graduation. A few move on to
research or postgraduate education.

5. University Facilities
The following refers to the facilities available at the main (Talbot) Campus.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 5
Bournemouth University

5.1 Usage
The utilisation of the space resources in the University is the highest in the sector, by
some 40%. The new Vice-Chancellor has indicated that there will be a building
programme to "rectify this" (his words).

The campus laboratories are available on a 24/7 basis. The only exception is the
Christmas shutdown of about a week.

5.2 Lecture Theatres
There are nine lecture theatres, ranging in capacity from 45 to 250. All have
appropriate AV equipment, including a computer and a single data projector. Given
the level of usage of space resources, there is a high level of contention for lecture
theatres.

5.3 Programming Laboratories
The University generally has a high student to computer ratio, which is encouraging.
However, the room utilisation is such that, according to students, finding a spare
programming laboratory during the day (between scheduled sessions) is virtually
impossible. There are general workstations available in the Open Access Centre and
the Library, but these do not have the same image as those in the Computing
laboratories.

As of Autumn 2005, the Talbot campus is fully wireless-enabled, which mitigates
this, for those with (and willing to bring) laptops.

Programming laboratories typically seat 18 students, and are equipped with data
projectors. One member of staff will supervise a laboratory session. All but one of the
computing laboratories use Windows - there is a single Solaris lab. The School
operates a grid across a number of laboratories.

5.4 Library and ICT support
A new library was built on the Talbot campus in 2003. Like its predecessor, it is
octagonal - an interesting shape for a library. The library contains a number of
workstations, although the image used supports general computing usage, and so does
not include all the software required for the computing courses.

5.4.1 Network Performance
ICT Services have instituted a continuous virus checking of most files. This has had a
significant impact on network performance, with compilation times frequently
measured in tens of seconds, even for the simplest of source files.

5.5 Recreational
The campus has a small student village, but very little in the way of relaxing areas for
students. There is a bar which serves food, and several other places to eat and obtain
soft drinks.

As the campus is some 2 miles from the centre of Bournemouth, few students remain
on the campus in the evening (apart from those studying or completing assignments).

Michael Jones Disciplinary Commons Portfolio - June2006 Page 6
Bournemouth University

6. My Background in Computing and Teaching
I started full-time teaching in 1974, 18 months after graduating. At that time it was a
good financial move! Since then, my focus has varied somewhat (my masters is in
Cognition, Computing and Psychology), but the continuing themes have been
computing and industrial liaison. I am currently the Business Fellow (Computing),
which means I visit companies on a regular basis, and initiate and support
collaborative projects, such as Knowledge Transfer Partnerships.

At Bournemouth, the nature of my teaching load has changed considerably, due to the
need to plug gaps as staff with programming expertise have left, and those with
different skills have been recruited. In the past 15 years I have taught units in AI, HCI
(design and programming), web development, OO programming, and eBusiness
programming across a total of 5 undergraduate and postgraduate programmes.

I was the Programme Leader for the BSc Computing/Software Engineering combined
programmes from 2002-2005. In Autumn 2005 I took over as unit leader for the
Programming unit, the first time I have delivered an introductory programming unit
since 1994, when I taught Ada on a conversion masters course.

6.1 Beliefs About Programming
The following beliefs about programming shape the design, delivery and assessment
of any programming unit which I lead:

1. Programming is as hard as learning to read or write. It requires people to
produce abstractions of their mental processes and represent these in an
unforgiving, arcane format.

2. Unlike when students learnt to read and write, university students have an
awareness of the progress of others, which can affect their learning, in both
positive and negative ways.

3. Programming takes at least 5 years to tame, and 10 years to master.
4. The first experience of programming has a disproportionate effect on the

development of the mental processes of programming. This means that the use
of simple programming systems for introductory programming can impede
understanding of the more fundamental concepts.

5. Comprehension is as important a cognitive skill, as algorithm design.
6. Discipline (in the form of software engineering principles) in the approach to

application design, implementation, and testing is central to effective software
development.

7. Optimising algorithms to minimise the use of computer resources, is no longer
a high priority.

8. Imperative object-orientation is the dominant programming paradigm.
9. Object-oriented design is hard. Experts in any field tend to use object-oriented

techniques, whereas novices tend to feel more comfortable with procedural
techniques.

10. Object-orientation is not hard. In a procedural world, objects provide
convenient mechanisms for contextualising nouns, verbs and adjectives.

11. Programming subsumes the language and the system. The size of the system is
a significant and complicating factor in learning to program.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 7
Bournemouth University

7. The Computing Undergraduate Framework
The first technical computing degree at Bournemouth University was the BSc
Software Engineering Management (SEM), the first intake of which was 15 in the
Autumn of 1989. A BSc Computing was added in 1995, which shared a common first
2 years with SEM until a review in 2001. A common first year was retained, and all
but one unit of the second year was the same.

The first year student intake built from the 15 in 1989 to 100+ in 2000-2002. Since
then, numbers have been restricted, firstly by staffing limitations, and latterly by
reductions in applications.

The Computing Undergraduate Framework was developed in 2004-5, as part of the
periodic review process, with a first intake in Autumn 2005. The size of the intake
was 68, a big improvement over the 51 recruited to the Computing/Software
Engineering Management combined programme in 2004. Applications for 2006 are
10% up on the previous year.

The framework consists of 4 programmes, all of which share a common initial 2
years. The placement is optional, although 'highly recommended'. The new
programmes are Software Engineering, and Software Product Design. The core final
year units for each of these programmes will be elective units for the others.

Throughout, the programmes have received BCS approval. In March 2006, the BCS
conducted its periodic review, and granted full accreditation to each programme.

8. The Programming Unit
Other units in the first year include elements of programming. There is a Web
Application Development unit, and another entitled Analysis, Design & Testing.

The other units are: Computing in Context, Systems & Networking, and Relational
Databases. All six units carry 20 credits.

8.1 Paradigm
The paradigm of choice for the unit is object-orientation. This was not always so. The
first programming language used on the SEM programme was Ada. This was briefly
superseded by C/C++, and then there were three failed attempts with Java. C was
reinstated as the first programming language in 2000. This remained the case until the
Autumn of 2005.

8.1.1 Why Java?
The unit specification does not specify a particular language. However, there is an
external constraint that affects the language choice: until Autumn 2005, the placement
year between the second and final years has been mandatory. As students apply for
placements during their second year, views of employers are taken into account. The
feedback we have received is that employers are not keen to send placement students
on ab initio training courses in programming languages. Therefore, the programme
team have accepted that it is vital that the students have skills in programming
languages which employers are familiar with. Whilst the placement year is now

Michael Jones Disciplinary Commons Portfolio - June2006 Page 8
Bournemouth University

optional, it is highly recommended, and applications from students wishing to
complete a placement are looked upon more favourably.

Java has been selected over C#, due to its availability on multiple platforms. There are
no immediate plans to change this. The School has an MSDNAA licence, and
students are able to download and install most of the Microsoft software (apart from
Office) free of charge. Many students avail themselves of this, and acquire VS skills
in their own time.

8.2 The Role of the Unit in the Framework
The responsibility of the unit is to introduce the main elements of programming. This
includes some design and testing, although these are covered in more detail in the
Analysis, Design & Testing unit.

The programming units in the second year are Object-Oriented Programming, and
Entertainment Systems, which focuses on multimedia programming.

8.3 My immediate background in teaching programming
I am not a believer in the use of languages like C as a first programming language.
Previously, I had been the unit leader on the programming unit in the second year, and
saw a very wide range of abilities, as one would expect. The issue was the inability of
quite capable programmers to grasp the concepts of object-orientation, once they had
a year of inculcation in the procedural paradigm.

However, there was little experience in the staff (including me) for an objects-first
approach, so the existing C-based teaching scheme was modified for this first
delivery.

8.4 Unit Specification
The Unit Specification is included in Appendix B.

8.5 Unit Specification Commentary
Each year I find that half of the students express dissatisfaction (verbally) with the
recommended book. This year we are recommending Lewis and Loftus. This is
reviewed annually.

The Library staff maintain booklists for the students, and use these as the basis for
acquisitions. As one would expect, additional requests from members of staff are also
accepted.

8.6 VLE
All units on the first year of the Computing Undergraduate Framework are using a
slightly restricted version of the Blackboard VLE. The full, updated version will be
available from Autumn 2007.

The VLE is being used as a repository for learning and assessment documents. Online
submission and assessment (through Blackboard) are not currently being used.

In addition to lecture slides, worksheets, and assignment specifications, the materials
include a number of tutorials. In previous years, I developed a simple website for my

Michael Jones Disciplinary Commons Portfolio - June2006 Page 9
Bournemouth University

materials. This has been integrated into Blackboard by using redirection. Currently,
my website for this unit is available external to Blackboard at:
(http://dec.bournemouth.ac.uk/staff/mjones/Teaching/unitIndex.php?unit=Computing-
C-Programming).

8.7 Support software
We have tried IDEs in the past, and found the time taken for the students to become
familiar with the IDE has been a significant problem.

The preferred editing/compilation combination is TextPad and command line Java
compilation. TextPad provides Java compilation and simple execution facilities.

All students are 'strongly encouraged' to install the JDK and TextPad on their own
computers. Nearly all the students have desktop and/or laptop computers, although
ownership of same is not mandatory.

We using the version of Java current when the image is revised each July. For
2005/06, this is version 1.5.0_03.

9. Pedagogy
The earlier experience of using Java as a first language led to the publication of a few
papers, but had disastrous results in terms of student learning and progression. It
became clear that the concept of an object is far from intuitive. Rather than persevere,
the decision was taken to re-trench to C, which has left a legacy of distrust regarding
OO and Java.

The underpinning pedagogy for the delivery of this unit was to cover the
fundamentals of programming and program design. Specifically, this meant that we
intended to inculcate the students with the notion of a version of the 'iterate' design
pattern. Rather than abstract the iteration, the aim was to expose the students to the
low-level iteration through arrays, files and collections.

9.1 When to introduce Objects?
The decision was taken to introduce the use of objects early, but the design of new
classes would be covered about halfway through the unit. This was reviewed at the
end of the unit, and a more objects-first approach will be taken.

10.Instructional Design
The standard for units at the University is one (one hour) lecture and one (one hour)
workshop or seminar per week. Programming is an exception, in that there are 3
contiguous hours of workshop per week, two of which are supervised.

Due to the timetabling system, there is no control over the proximity of the sessions.
This year, for example, the lecture was on Friday afternoon, and the workshops on
Thursday and Friday mornings.

The purpose behind the design of the unit was consolidation. The approach taken
prior to 2000 was anarchic, with seven changes of direction in teaching approach
and/or programming language in 10 years. The approach taken since that time has

Michael Jones Disciplinary Commons Portfolio - June2006 Page 10
Bournemouth University

http://dec.bournemouth.ac.uk/staff/mjones/Teaching/unitIndex.php?unit=Computing-C-Programming
http://dec.bournemouth.ac.uk/staff/mjones/Teaching/unitIndex.php?unit=Computing-C-Programming

yielded positive results, and the team took the view that radical redesign would be
foolhardy.

10.1 Lectures
Currently, I use 2 types of lectures - the (largely) interactive and the (largely)
presentational. Presentational lectures progress through a sequence of slides. These
are of limited effectiveness in the context of programming.

Interactive lectures include the use of the whiteboard for written notes, and the
computer to demonstrate specific techniques. The advantage is that students can see a
solution evolving. There are drawbacks, especially as my writing is very poor. Also,
these sessions tend to be less structured. This is something I will review this summer.

Interweaving presentation slides and interactive periods has proven to be disruptive to
students. A better solution would be two data projectors per lecture theatre. The
obvious solution of an overhead projector and a data projector is not possible, as they
both use the same screen in each lecture theatre.

10.1.1 Interaction
I ask questions, but there were two problems with this cohort. In addition to the
traditional problem of a small coterie of students answering nearly all the time, the
lecture theatre allocated this year was wide and shallow, making it difficult to interact
with a significant percentage of the students at any given time.

10.1.2 Feedback
Currently, I do not use any specific feedback mechanisms for the lectures. I will
consider some of the options identified by other members of the Disciplinary
Commons.

10.2 Programming Laboratory sessions
Each group of 18 students has a 3 hour programming workshop each week. The first
and last hour is supervised by one member of staff (not necessarily the same person).

10.2.1 Weekly worksheets
Each student is provided with a weekly worksheet (available via the VLE) (see
Appendix D). These include a number of exercises (typically 8-12) most of which
involve constructing applications. The remainder focus on adding functionality to an
existing application.

Students work through the exercises at their own pace, asking questions where
necessary. Staff are encouraged to circulate, providing assistance and questioning
students on their progress. All feedback is verbal.

Students were encouraged to reflect on their progress via a journal, but this was not
highly structured, and few participated.

10.2.2 Multiple choice
The original idea was to make a multiple choice test available for each workshop, but
this proved too large a development load. A simple web-based delivery application

Michael Jones Disciplinary Commons Portfolio - June2006 Page 11
Bournemouth University

was written, and a few tests made available. The results of these tests were not
recorded, and students could continue answering the same question until they selected
the correct answer. (Appendix E contains a link to lesson tests).

A version of this was made available for revision purposes.

A secure version was used in the summative assessments.

11.Assessment
The assessment regime is, inevitably, a compromise between one’s beliefs concerning
assessment, and practical considerations regarding student workload on this and other
units.

11.1 Assessment regime
The unit is assessed via a combination of coursework (50%) and unseen, end of unit
examination (50%).

11.1.1 Rationale for Examination
For the past 10 years there has been no examination in first year Programming. The
corresponding second year unit does have an examination, with the effect that the first
experience that students have had of an examination in programming was at a stage
when the results contribute to the final award. The decision was made to have an
examination in each of the programming units.

Until the students complete the examination, one cannot know how this will go. There
is a certain amount of apprehension in the teaching team.

11.1.2 Coursework
The coursework consists of 4 separate pieces of work:

a. A multiple choice online test, and a short written test
b. An electronic logbook of 5 applications
c. Another multiple choice online test, and a short written test
d. Construction of one of 3 applications

This follows the format of previous years - another facet which will be revisited at the
end of this academic year.

11.2 5 Beliefs About (Summative) Assessment
My beliefs about assessment are:

 Assessments should be multi-level, reflecting the range of student capability
– students should be able to choose the level they wish to attempt

 Each assessment should involve new knowledge
 Plagiarism should be discouraged
 If the assessment involves writing a program, then the program should

compile and execute
 Marking:

– Students should see where marks:
 will be allocated

Michael Jones Disciplinary Commons Portfolio - June2006 Page 12
Bournemouth University

 have been allocated, and why
– It should be easy to mark

11.3 Individual or Group?
All the assessments in the first year are individual. Again, this is a tradition on first
year programming. This will be reviewed at the end of this academic year.

11.4 Formative assessment
Students are supplied with a number of exercises each week (typically 8-12), and
multiple choice ‘lesson tests’. They are provided with verbal feedback in the context
of the workshop. Formative assessment is one area we hope to increase in the next
delivery. The other is evidence of reflection, in the form of journals. In this delivery,
journals are optional, and have had a low take-up.

Students are also encouraged to email their completed exercises, for comment. Few
do this, but they receive written feedback.

11.4.1 Lesson Tests
In the early weeks, students have access to a couple of online tests, which allow them
to see the answers. These are available at:
http://dec.bournemouth.ac.uk/staff/mjones/Teaching/runTests.php?unit=Computing-
C-Programming

Unlike the summative multiple choice tests, these allow students to continue selecting
until they get the right answer.

In the next delivery (this is the first with the current delivery team), more tests will be
available.

Students do not receive written feedback on non-assessed work. Partly, this is because
the marking of the assessed work takes so long. Simpler-to-mark summative
assessments will (hopefully) facilitate the availability of formative feedback.

11.5 Sample Summative assessment
This is included in Appendix G.

One of the pertinent issues relating to this assignment is the timing of the assignment.
Assignment 1 was submitted at the end of the Autumn term, some 4 months before
the due date of this assignment. In this time gap students focused on assignments in
other units, thus limiting the ‘continuous’ nature of the assessments in Programming.

11.5.1 How the beliefs realised in the sample assignment?
1. Multiple applications are specified, each with a different level of difficulty.

Students can select which they attempt. As the marking scheme requires that
the application functions (at some level), students are encouraged to attempt
the application which most suits their abilities.

2. The new knowledge involved involves recursively descending through a file
system.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 13
Bournemouth University

http://dec.bournemouth.ac.uk/staff/mjones/Teaching/runTests.php?unit=Computing-C-Programming
http://dec.bournemouth.ac.uk/staff/mjones/Teaching/runTests.php?unit=Computing-C-Programming

3. Students are required to demonstrate their applications, and explain certain
elements (see Appendix H for the demonstration checklist). Explanation and
comprehension cannot, in themselves, detect plagiarism, but they do ensure
that those receiving ‘help’ must play some role in the code production.

4. The simplest application, the copier, should be achievable by every student, as
previous exercises have involved both reading and writing files. Getting an
application to compile and execute is an essential part of programming.

5. The focus in the marking is on the application executing and the
documentation being in place. These are relatively easy to mark. Issues such
as the efficiency of the algorithm are briefly covered in the feedback.

11.6 Providing Feedback
Appendix H contains links to examples of oral and written feedback.

Informal and formal feedback is provided. The informal, verbal feedback is very
informal – the emphasis is on minimising weaknesses, in order to limit the loss of
motivation, especially for the weaker students. Formal feedback is provided in written
form, which was augmented in the first assignment of the year by oral feedback.

11.6.1 Written
The online multiple choice tests produce two forms of output - an immediate mark,
showing the total number of questions answered correctly. A complete listing of
questions, answers, and correct answers is made available after a week or so (when all
have completed the test).

Written comments are also made on the other assignments. Some of this is auto-
generated, with adjectives used for excellent to indifferent performance. Additional
comments are usually made.

11.6.2 Oral
This year, I used oral feedback, by recording my comments as I looked through the
code. The reaction amongst the students to this was not measured (it should have
been), but anecdotally some of the students felt that it was useful.

One difficulty arose - the default recorder supplied with Windows only allows for 60
seconds of recording from a given point. For longer recordings, one has to stop the
recording, and then start again. One tends to watch the clock whilst recording. An
improved mechanism will be used next year.

11.6.3 Availability of Feedback
Students receive their feedback electronically, via a web page which requires a login.

12.Feedback on the Performance of the Unit

12.1 University mechanisms
The University operates a system which, until last year, was called TLAS (Teaching
and Learning Assessment Survey). It is now called AUE (Annual Unit Evaluation)
(See Appendix J). The idea is the same - Lickert-scale responses required from a
dozen or so questions on each unit (as well as on the facilities, etc.)

Michael Jones Disciplinary Commons Portfolio - June2006 Page 14
Bournemouth University

The survey is distributed towards the end of term 2, well before the final assignment
or examination. The value of the responses is therefore questionable, and are used
only for general guidance.

Students write their answers, although there are plans to put it online. A previous
experiment in that direction allowed multiple (anonymous) entries by a single student,
so proved worthless.

Each programme produces a Unit Monitoring Report (Appendix I), which includes
analysis of student feedback and student performance, as well as reflections by the
unit leader on the conduct of the unit, and plans for the next presentation.

12.2 Programme mechanisms
In order to facilitate more timely feedback, the programme has introduced two
mechanisms.

12.2.1 Intermediate questionnaire
A TLAS-like survey was conducted before Christmas, so that the results can then be
fed into the delivery of the rest of the unit. This was the first year of the use of this
process. The Programming unit received very positive responses.

12.2.2 Course tutorials
For the past 10 years, there have been scheduled sessions each week for students (in
their seminar groups) to provide verbal feedback to a member of the lecturing staff. If
there is a pattern to the comments, this is fed back to the unit leader.

More serious or persistent problems are reported through the formal Programme
Management meetings (as are successes).

13.Reflections
These are my personal reflections on various aspects of the design and delivery of the
Programming unit for the academic year 2005-06.

13.1 The Environment

13.1.1 University
The University is a changing environment - this has been the pattern of the past 20
years, and is set to continue. The new focus on research is welcoming, but the pace of
change is challenging.

13.1.2 School
Computing is the last element in the name of the School, and has suffered a worse
staff student ratio than other parts of the School and University. This has been mainly
due to the failures and delay in replacing staff who have left.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 15
Bournemouth University

13.1.3 Programme
The explicit aim of the programme is to smooth the path of students into well paid
employment in the Computing industry. This vocational emphasis has exerted
pressure to 'chase the technology', which can deflect from improving the delivery of
the units.

The programme has also had a strong scholarly element, and this, combined with the
vocational elements, has led the programme to have the reputation across the
University as the hardest undergraduate course.

13.1.4 The University Experience for Students
The pressure to succeed, from parents and bank managers, as well as from the
students themselves, has led to a noticeable increase in tension amongst students. Add
to this the high demands of the programme, and one generally finds that Computing
students are the most stressed in this University.

The limited relaxation facilities and available programming laboratories only serve to
reduce the satisfaction element of the student experience. Bournemouth students, and
Computing students in particular, have made highly negative returns to the National
Student Survey.

The picture is not all gloom, with most students going on to highly successful careers.
Their student experience, though, is less pleasurable than it could be.

13.2 The Unit

13.2.1 Overall
As this is the first cohort on the revised scheme, and the year is not complete, it is not
wise to give an overall verdict. Until the start of term, I would have said that things
were going well, but there were a number of non-submissions for the second
assignment.

13.2.2 What has gone well?
The weekly worksheets have provided students with a framework to develop their
skills. The number of exercises also permit a level of privacy, where students can
appear to be working on different exercises, thus reducing the ability for comparisons.
The negative side of this is that students can hide.

The traditional (on the course) negative views concerning programming have not
manifested themselves, and the attrition rate has been lower than usual.

The assignments were set on time, and the marking completed as per the University
stated requirements (within 3 weeks). All materials were available by the scheduled
sessions.

13.2.3 What has gone badly?
The levels of feedback are too low. This leaves the students somewhat lost, and the
delivery team uncertain of where to focus their energies.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 16
Bournemouth University

13.2.4 Did the Delivery Plan Work?
The main elements of programming were introduced in a reasonably logical order,
which permitted students to gain appropriate skills. In reviewing the plan, three
pedagogic problems were identified: the emphasis on numbers, the reliance on time-
based arrays, and the late introduction of classes.

Numbers
The previous C-based delivery programme had focused on numerical examples. In
itself this was not a problem, but it delayed the introduction of an objects-based focus.
More work earlier in strings would have been more beneficial.

Time-based Arrays
As arrays were not introduced until the Spring term, the algorithms in the first term
were restricted to the 'read a number in a loop' variety. This meant that the intention to
cover iteration through datasets initially focused on files. Arrays were then the focus,
followed by collections, using the file system as an example of a recursive dataset.

Although the focus on files was partially successful, the sequencing was awkward. A
number of weeks were spent on basic loops, but all the examples used files (keyboard,
screen and disk-based). Without arrays or collections, the examples used what I term
'time-based' arrays, where the same scalar variable is used in each iteration to hold a
different value. I believe this is difficult for the students to comprehend, as it involves
them understanding the concept of scoping, long before we have formally covered the
subject.

Late Introduction of Classes
The focus on procedural aspects in the initial stages was intended to be ameliorated by
the use of an application design from the outset which included separate 'App' and
'business' classes. This was not wholly successful, as a number of students later
assumed that no logic could be placed in 'main', other than to instantiate a business
object.

Objects were introduced in a period between assignments. This caused a problem, as
students were focussing on assignments in other units.

13.2.5 What is Excellent about the delivery?
Basically, nothing. The various elements of materials, assessment, and feedback are
present, but there is little evidence of practice which could usefully be passed on to
others.

13.2.6 What innovations are there?
Again, it was essential to build a platform which can be developed, and into which
innovative ideas can be introduced. This has been achieved.

The minor innovations were the use of recorded oral feedback for assignments, and
the generation of feedback documents from spreadsheet marks and comments files.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 17
Bournemouth University

13.2.7 What changes will be made?
The ordering of material will be changed, with a greater emphasis earlier on
constructing loops. The use of collections and arrays will also feature earlier. The
rationale for this is that the primary pattern for the first year is iteration through
dataset, and the delaying of arrays until term 2 compromised this, to an extent.

The main organisational change will be to increase information flow, starting in the
induction week. Students will be canvassed as to their previous programming
experience. This may be used to influence the selection of seminar groups, to include
some element of streaming.

Feedback on student progress will focus on each of the components of programming.

Student feedback on the progress of the unit will be facilitated by the wider use of
journals, as used by Pete Bibby. These will be integrated into the formative
assessment.

Finally, the timetabling of the lectures and workshops will be harmonised, with the
idea of a ‘programming day’, where all the workshop sessions will take place.

13.3 My Performance
In terms of the mechanics, the materials and assessments were in place when required.
Feedback to students did not attract any negative comments, and the performance of a
number of students was outstanding.

There was a degree of tentativeness in my performance in this unit, which surprised
me. I was much less confident of delivering introductory programming than I had
imagined I would be.

14.Final Thoughts
As software becomes more pervasive and more sophisticated, the requirement for
programming will increase, to provide the necessary contextualisation that a generic
piece of software cannot provide. The nature of this programming will vary as it does
not, from configuration files, through spreadsheets to programming languages. The
acquisition of some level of programming capability will become more important.
The teaching of programming will, in future, face ever greater challenges.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 18
Bournemouth University

Appendix A: The University

Entrance

Poole House

Atrium

Cafe Mission Statement Library Cafe

Workstation Library & Sculpture Stevenson Lecture
Theatre

Lots of Rocks Courtyard Library

Michael Jones Disciplinary Commons Portfolio - June2006 Page 19
Bournemouth University

Appendix B: Unit Descriptor

Unit number

Unit title PROGRAMMING

Level C

Credit value 20

PRE- AND CO-REQUISITES

None.

AIMS

The role of this unit in the programme is to provide the learner with the fundamental skills and
understanding of algorithm construction in modern programming languages.

The aim is to develop competence in the learner, so that they may write well designed, well structured,
and adequately tested programs that meet given specifications, using a single programming language.

The unit concentrates on the Programming Fundamentals aspect of the Computing benchmark and also
includes topics from Data Structures and Algorithms.

INTENDED LEARNING OUTCOMES

At the end of the unit the learner is expected to be able to:

1. Design and implement algorithms to solve simple, well-specified problems, using sequence,
selection and iteration.

2. Demonstrate the appropriate use of data structures in simple programs.

3. Reason about the correctness of algorithms using pre- and post- conditions.

4. Execute functional and structural tests of simple programs.

5. Demonstrate the appropriate use of documentation techniques and tool support to
communicate to others the design of the programs he/she has developed.

6. Comprehend and construct programs written in a programming language which supports
object-orientation.

LEARNING AND TEACHING METHODS

Background

This unit is the focus for the development of skills in, and the understanding of, the design,
implementation and testing of small computer programs.

The treatment is to teach programming from first principles in a disciplined and design-focussed
manner. The unit aims to concentrate on the principles of good software development, rather than
simply teach the syntax of any given language. Hence, there should be useful lessons learned even for
those already familiar with programming.

The approach taken in the unit is system building 'in the small', enabling the solutions to a variety of
problems to be implemented. Problems studied will bear some relationship to real-world problems, but
be simplified to enable concentration on the techniques and disciplines involved. The presentation of

Michael Jones Disciplinary Commons Portfolio - June2006 Page 20
Bournemouth University

the unit will stress reasoning about problems, and design, before the production of program code.
Example problems and their solutions will be used to demonstrate the techniques involved and the
importance of structured testing and appropriate documentation will be stressed.

Indicative Styles

The unit will be delivered through a mix of lectures and practical workshops (labs). The lectures will
develop programming concepts, while the students will use the workshop time for their practical
software development work. Each lecture topic is matched with a set of graded lab exercises, which
enable the learner to put the concepts from the lecture into practice.

Feedback

Learners will be given direct feedback on their example programs by supporting staff in labs. In
addition, they will be given written feedback on programming assignments. Written tests will be
discussed, teaching staff pointing out particular strengths and weaknesses.

ASSESSMENT

Assessment Weighting

The weighting of coursework to examination is: 50:50

Assessment Regime

All ILOs will be assessed through coursework and/or examination.

A typical assessment regime will be:

ILOs 1-6: assessed by practical programming assignments

ILOs 3 and 6: assessed through written tests

ILOs 3 and 6 and (to some extent) 1 and 2: assessed through an end-of-unit unseen
examination.

INDICATIVE CONTENT

Elements of computer programs
Variables and types of data. Executable statements. Sequence, selection and iteration.

Data Types
Simple data types: scalars, references. Aggregate data types: arrays.

Algorithm design
Design decisions. Loop design. Compound conditions. Recursion. Error and exception handling.

Program aggregation
Simple classes, using aggregation. Methods. Value and reference parameters. Instance and class data.
Library classes. Comprehension of single inheritance.

File and Directory processing
Input and output of files, streams, and directories.

Program quality
Code layout, naming conventions, comments. Correctness - pre- and post-conditions.
Structural and functional testing. Test coverage. Test case selection. Debugging.

INDICATIVE KEY LEARNING RESOURCES

Books

John Lewis, William Loftus (2004), Java Software Solutions (4th Ed.). Addison-Wesley.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 21
Bournemouth University

Kathy Sierra, Bert Bates (2003). Head First Java, O'Reilly & Associates.

Steve McConnell (2004). Code Complete: A Practical Handbook of Software Construction (2nd Ed.).
Microsoft Press International.

Journals

Communications of the ACM

Journal of Object-Oriented Programming

ACM SIGCSE

ACM SIGPLAN

Web-based sources

jGrasp: http://www.jgrasp.org/

Support website for Lewis & Loftus: http://duke.csc.villanova.edu/jss1/

Unit support page: http://dec.bournemouth.ac.uk/support/comp/prog/

Michael Jones Disciplinary Commons Portfolio - June2006 Page 22
Bournemouth University

http://dec.bournemouth.ac.uk/support/comp/prog/
http://duke.csc.villanova.edu/jss1/
http://www.jgrasp.org/

Appendix C: Unit (Delivery) Guide

Lecture
Date
(Fri)

Lectures Workshops ILOs Directed Reading

1 07-Oct Java: Hello World (SW) Java: Hello World 1
Lewis & Loftus:
Chapter 1 - pages
26-42

2 14-Oct Java: Variables and pre-
defined arrays (SW)

Java: Variables and
pre-defined arrays 1,2

Lewis & Loftus:
Chapter 2 - pages
61-84

3 21-Oct Java: Writing Text Files
(MJ) Java: Writing Text Files 1,2

Lewis & Loftus:
Chapter 2 - pages
88-92

4 28-Oct Java: Reading Text Files
(MJ)

Java: Reading Text
Files 1,2

Lewis & Loftus:
Chapter 2 - pages
88-92

5 04-Nov Java: Repetition using fixed
count loops (MJ)

Java: Repetition using
fixed count loops 1

Lewis & Loftus:
Chapter 5 - pages
245-251

6 11-Nov Java: Selection (SW) Java: Selection 1
Lewis & Loftus:
Chapter 5 - pages
201-226

7 18-Nov Java: Repetition using
variable count loops (SW)

Java: Repetition using
variable count loops 1

Lewis & Loftus:
Chapter 5 - pages
227-237

8 25-Nov Programming: Algorithm
design (MJ)

Programming: Algorithm
design 1,3

9 02-Dec Programming: Introduction
to testing (SW)

Programming:
Introduction to testing 4,5

10 09-Dec
Programming: Testing
strategies and creating
data (SW)

Programming: Testing
strategies and creating
data

4 Lewis & Loftus:
Chapter 3; 124-126

Christmas Vacation

11 13-Jan Java: Creating and
processing arrays (SW)

Java: Creating and
processing arrays 1,2

Lewis & Loftus:
Chapter 7 - pages
369-379

12 20-Jan Java: Searching and
sorting arrays (SW)

Java: Searching and
sorting arrays 1,2

13 27-Jan Java: Writing methods (MJ) Java: Writing methods 1,6
Lewis & Loftus:
Chapter 6 - pages
319-327

14 03-Feb
Java: Program blocks;
variable and method
scoping (MJ)

Java: Program blocks;
variable and method
scoping

1,2
Lewis & Loftus:
Chapter 6 - pages
319-327

15 10-Feb Java: Sharing data
between methods (SW)

Java: Sharing data
between methods

16 17-Feb Project Week Project Week

17 24-Feb OO: Introduction (MJ) OO: Introduction 1,6
Lewis & Loftus:
Chapter 6 - pages
287-308

18 03-Mar Java: The final and static
qualifiers (MJ)

Java: The final and
static qualifiers 1,2

Lewis & Loftus:
Chapter 6 - pages
291-295

19 10-Mar Programming: Application Programming: 1,5,

Michael Jones Disciplinary Commons Portfolio - June2006 Page 23
Bournemouth University

file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Programming-Application_architectures.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-The_final+static_qualifiers.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-The_final+static_qualifiers.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=OO-Introduction.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Java-Sharing_data_between_methods.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Java-Sharing_data_between_methods.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Sharing_data_between_methods.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Sharing_data_between_methods.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Program_blocks_sc_variable+method_scoping.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Program_blocks_sc_variable+method_scoping.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Program_blocks_sc_variable+method_scoping.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Java-Writing_methods.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Writing_methods.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Programming-Algorithm_design.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Programming-Algorithm_design.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Programming-Algorithm_design.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Programming-Algorithm_design.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Java-Repetition_using_fixed_count_loops.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Java-Repetition_using_fixed_count_loops.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Repetition_using_fixed_count_loops.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Repetition_using_fixed_count_loops.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Java-Reading_Text_Files.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Java-Reading_Text_Files.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Reading_Text_Files.ppt&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=OtherActivities&filename=Java-Writing_Text_Files.htm&unit=Computing-C-Programming
file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Java-Writing_Text_Files.ppt&unit=Computing-C-Programming

architectures (SW) Application
architectures 6

20 17-Mar Java: Introduction to
recursion (MJ)

Java: Introduction to
recursion 1

Lewis & Loftus:
Chapter 11 - pages
575-588

21 24-Mar Java: Introduction to
collections (SW)

Java: Introduction to
collections

1,2,
3

Lewis & Loftus:
Chapter 12 - pages
611-620

Easter Vacation

22 21-Apr Java: More collections:
hash tables (SW)

Java: More collections:
hash tables 1,2

23 28-Apr Java: Revision (SW) Java: Revision 1,2

24 05-May Programming: Revision
(MJ) Programming: Revision 1,2,

6

25 12-May Revision Revision 3,4,
5

Michael Jones Disciplinary Commons Portfolio - June2006 Page 24
Bournemouth University

file:///C:/Documents and Settings/jonesm/My Documents/Disciplinary Commons/Portfolio-June9/readfile.php%3Fdir=Lectures&filename=Programming-Application_architectures.ppt&unit=Computing-C-Programming

Appendix D: Weekly Worksheet Example
Computing Undergraduate Framework

Programming Workshop Week 4

Java – Reading Text Files Exercises

1. Compile and run the ReadFile application. Run the application, and
input the values requested.

2. Create a text file using TextPad, and then use the input redirect
command to take the input from this file, not from the keyboard.
Comment on the output.

3. Create an application which takes the name of the text file to be read
from the command line, and then displays the first 2 lines of that file.

An example command line would be:

java ReadFileApp "h:\MyTextFile.txt"

(You only need to enclose the filename in double quotes if it contains
spaces.)

4. Repeat the previous command, this time using the Unix directory
character ‘/’ instead of ‘\’. Does it work?

5. Write an application which reads 3 numbers from the user, and adds
them up, and prints out the result. Each number is to be stored in a
different variable.

6. Run the previous application, this time taking the input from a file using
input redirection.

7. Modify the application to read the input from a text file (not using input
redirection).

8. Write an application which produces the sum of 4 numbers entered by
the user on the command line. For example:

java SumCommandLineApp 3 2 1 4

Will produce: The sum of the 4 numbers is 10.

You will need to convert the command line words (which are stored as
strings) into integers. You will find the ‘parseInt’ method of the Integer
class useful.

9. Modify the previous application to allow the user to enter non-integer
numbers. Look at the definition of the ‘Double’ class.

10.Write an application which has the following behaviour: the user
specifies the names of three input files on the command line. The

Michael Jones Disciplinary Commons Portfolio - June2006 Page 25
Bournemouth University

application is to read the first line of each of these files, and then write
them (in order) to an output file.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 26
Bournemouth University

Appendix E: Sample multiple choice questions

Link to Lesson tests

Michael Jones Disciplinary Commons Portfolio - June2006 Page 27
Bournemouth University

http://dec.bournemouth.ac.uk/staff/mjones/Teaching/runTests.php?unit=Computing-C-Programming

Appendix F: Sample Summative Assignment

School of Design, Engineering & Computing

Course Computing Undergraduate Framework
Year Level C
Unit Programming
Assignment Two

Issue Date: 14 March, 2006
Due Date: 25 April, 2006

Introduction

This assignment addresses three of the intended learning outcomes of this
unit, specifically –

4. Execute functional and structural tests of simple programs.
5. Demonstrate the appropriate use documentation techniques and tool

support to communicate to others the design of the programs he/she has
developed.

6. Comprehend and construct programs written in a programming language
which supports object-orientation.

Individuals and Groups

This is an individual assignment, but students can work in groups of three.

There are 3 applications. Each student elects which application to attempt. As
the output from application 1 is the input to application 2, and so on, students
can work in groups to produce an application pipeline. This is optional.

Note that the applications are not equally difficult. It is important that the
application you write actually works. Therefore, choose the application which
most closely suits your ability.

NOTE: it is important that you follow the instructions for formatting your code.
More details, plus an example, are available from the tutorial available at:
http://dec.bournemouth.ac.uk/staff/mjones/Teaching/tutorials.php?unit=Comp
uting-C-Programming

Michael Jones Disciplinary Commons Portfolio - June2006 Page 28
Bournemouth University

http://dec.bournemouth.ac.uk/staff/mjones/Teaching/tutorials.php?unit=Computing-C-Programming
http://dec.bournemouth.ac.uk/staff/mjones/Teaching/tutorials.php?unit=Computing-C-Programming

The Concepts

Each application covers a number of concepts, each of which will result in
some code. It is the responsibility of the student to annotate his or her code,
so the coverage of the concepts can be highlighted. See the tutorial available
at the address above.

Failure to correctly highlight the concepts will result in a significant loss of
marks.

The Applications

Application 1: The Creator Difficulty: Challenging
This application creates a directory tree, containing files with various
extensions. The root directory will be the name of the group (e.g., Knuth). At
each level, a random number of files (between 0 and 30) and a random
number of directories (between 0 and 5) are to be created. The maximum
depth of directories is to be supplied on the command line of the application.

An example command line will be:

java CreatorApp Knuth 5

Indicating a maximum depth of 5 levels, including the root directory.

All filenames must start with the string ‘file_’, and directories with ‘dir_’. The
rest of the name (apart from the extension) must be of the format
aaaa_nnnn_aaaa_nnnn, where ‘a’ is a lowercase letter, and n is one of the
digits (0-9).

Each file will have one of the following extensions: txt, java, php, html. The
contents of each file will be relevant to the extension (i.e., the Java file should
compile correctly), and must contain (in a comment at the start of the file): the
pathname of the file (including the root directory), the filename, and the date
and time which it was created (using the YYYY-MM-DD-HH-MM-SS format).

I.e., in a PHP file:

<?php
// Path: Knuth/
// File: file_aaaa_0000_bbbb_1111.php
// Date created: 2006-04-01-12-15-00
// Date changed: 2005-10-02-52-35-00

The last changed (modified) time of each file should be set to a random time
within (approximately) the past 12 months.

The file should also contain a random (between 1 and N – the number of
words) subset of words from a file called words.txt (which is in the same

Michael Jones Disciplinary Commons Portfolio - June2006 Page 29
Bournemouth University

directory as the creator application). These should be embedded in the file, for
example in strings, or as variable names or contents of HTML tags.

The application should also log each file which is created, in a file called
‘filesCreated.txt’. Each line of this file will contain the pathname of the file, the
last modified time which has been set, and the subset of words which have
been selected.

The filesCreated text file should be placed in the root of the created directory
tree (Knuth, in this case).

NOTE: created directories should be indicated by a trailing ‘/’. (Forward slash
should be used as a directory separator).

NOTE: all pathnames are taken from the root directory of the group, not of the
file system. So, if you are in the ‘Knuth’ group, all your pathnames will start
with ‘Knuth/’ The first item created will be the Knuth directory itself, so the log
file (filesCreated.txt) will contain the first line:

Knuth/ 2006-04-03-12-13-56

Indicating that the directory was created at nearly 12:14 on the 3rd of April,
2006. An example for a file would be:

Knuth/file_aaaa_0000_bbbb_1111.html 2006-04-03-12-13-
56 2005-11-02-10-30-00 first king

The line shows that the file was created at the same time as the directory; last
modified time of the file was nearly 25 past 3 on the 13th of September 2005,
and that ‘first’ and ‘king’ were selected from the set of words in the words.txt
file.

NOTE: a word will be taken to be any sequence of letters (A-Z, a-z).

Concepts Involved

The Java concepts included in this application are:
1. class
2. attribute
3. constructor method
4. non-constructor method
5. method signature
6. writing to a file
7. reading from a file
8. checking the command line
9. creating a directory
10.using a collection
11.handling an exception
12.randomly selecting from a collection
13.accessing file characteristics (e.g., modified time)

Michael Jones Disciplinary Commons Portfolio - June2006 Page 30
Bournemouth University

14.using a Java package

NOTE: an application may contain multiple instances of the use of a concept.

Application 2: The Crawler Difficulty: Hard
This application identifies files which could potentially be archived and copied.
A file is to be archived if the last modified date is more than 100 days ago. A
file is to be copied if it has been modified since a given time. Only nominated
extensions are to be considered. The java.util.Calendar class contains
relevant methods for comparing times and dates.

For instance, a command line of: java CrawlerApp Knuth 2005-12-28 php html

Will nominate for archiving or copying only php or html files in the Knuth
directory tree. It will only nominate for copying files modified after midnight on
the 28th of December, 2005.

The output from this application is two files (called archive.txt and copy.txt)
containing the names of files to be archived, and those which may be copied.
The names will follow the convention specified in the create application.
These two text files must appear in the root directory (Knuth, in this example).

A simpler version of this application will archive none of the files, and identify
for copying all files with the nominated extensions.

NOTE: a word will be taken to be any sequence of letters (A-Z, a-z).

NOTE: this application is NOT to read the log file created by the create
application. Any application found to be doing this will be awarded a mark of
zero.

Concepts Involved

The Java concepts included in this application are:
1. class
2. attribute
3. constructor method
4. non-constructor method
5. method signature
6. writing to a file
7. reading from a file
8. handling an exception
9. checking the command line
10.string manipulation
11.accessing file characteristics (e.g., modified time)
12.using a Java package

NOTE: an application may contain multiple instances of the use of a concept.

Application 3: The Copier Difficulty: Medium

Michael Jones Disciplinary Commons Portfolio - June2006 Page 31
Bournemouth University

This application reads the archive.txt file, and archives (copies) the files listed
in it to a directory called ‘archive’ in the root directory (Knuth in the previous
two applications). All files will be in the same directory, with the name of the
file reflecting its location. All ‘/’ in the path will be replaced by ‘_slash_’. So, a
file called 'Knuth/file_abcd_0123_efgh_4567.php' will be archive to a file
called: 'Knuth/archive/Knuth_slash_file_abcd_0123_efgh_4567.php'

NOTE: you can assume that all files to be copied are text files.
NOTE: archived files are NOT to be deleted.

A similar process will be followed for copying files, except that the destination
directory is to be called ‘copy’, and that files will only be copied if they contain
at least one of a set of specified words. These words are to be specified on
the command line. If no words are supplied, all files are copied. The filenames
are to be modified as per the archive, with ‘/’ being replaced by ‘_slash_’.

An example command line is:

Java Copier fred Bloggs ate my hamster

Will archive all files identified in the archive.txt file, and copy all files listed in
the copy.txt file which contain ANY of the words on the command line (from
'fred' onwards).

Concepts Involved

The Java concepts included in this application are:
1. class
2. attribute
3. constructor method
4. non-constructor method
5. method signature
6. writing to a file
7. reading from a file
8. handling an exception
9. using a collection
10.using a Java package

NOTE: an application may contain multiple instances of the use of a concept.

Submission
There will be one CD submission per student, which includes all the
documents.

The structure of the CD must be:

Top level directory

File called 'Personal Details.txt', containing the names of the student and his
or her group.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 32
Bournemouth University

Directory called 'Application'
One directory for the application – called Creator, Crawler, or

Copier
Source directory

Java files
Object directory

class files
JavaDoc directory

Documentation (JavaDoc) files
Annotated directory

A single annotated file

Directory called ‘Tests’
One directory for the application – called Creator, Crawler, or

Copier
Test plans and results (RTF or PDF files)
Batch file to compile and execute the application

One generated directory with the name of the group

Documentation
Each of the applications must be documented using the JavaDoc
documentation guidelines.

The following are considered important:

a. appropriate choice of class, data, and method names
b. consistent indentation
c. appropriate use of comments within methods
d. appropriate use of JavaDoc comments for methods and classes

Note: the marking scheme will punish those who skimp on these areas.

Testing
You must provide evidence that each of the applications compiles and
executes successfully.

Evidence will include:

a. Structural test plans and results analysis (in RTF or PDF format)
b. Captured output from the compilation and execution of the application
c. Input and output files (where relevant)

Demonstration
Students must demonstrate the compilation and execution of their
applications in the relevant workshop in the week of the assignment
submission.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 33
Bournemouth University

Presentation of the Results
The output of the application should be presented as appealingly as possible -
using, for instance, HTML and/or PHP. The more pleasing the output, the
more marks.

Marking Scheme
The marks for each student will be allocated as follows: there will be a ‘raw’
mark, which is then modified (multiplied) by a 'difficulty' mark, and a ‘style’
mark.

Raw Mark

Category Mark
Evidence of correct execution, in the context of a
demonstration
Compilation – 10%, execution – 15%

30%

Evidence of appropriate testing, including structural test plans
+ results

20%

Correct highlighting of the coverage of concepts - using
HTML embedded in Java comments - see the tutorial

30%

Presentation of the results of the application 20%

Difficulty

Category Mark
Multiplier

Crawler 1
Creator 0.85
Copier 0.7

Style

Category Mark Range
Evidence of documentation (including JavaDoc), code layout,
appropriate use of variable names

0 - 1

Good style means appropriate use of:
- variable, class, and method names
- classes - i.e., more than one
- consistent indentation
- JavaDoc comments on methods and classes

Therefore, if you produce a working application, but don’t bother to document
the code, and use variable names with single letters and/or starting with
capital letters, and put everything in a single class, then you will be allocated a
style mark close to 0. That will produce a low overall mark, whichever
application you choose.

Michael Jones Disciplinary Commons Portfolio - June2006 Page 34
Bournemouth University

Signature Lecturer:

Signature QA:

Date:

Michael Jones Disciplinary Commons Portfolio - June2006 Page 35
Bournemouth University

Appendix G: Demonstration Checklist

Computing Undergraduate Framework

2005/06

Programming Assignment 2 - Demonstration

Date:

Student: Group:

Supervisor: Mark:

Application demonstrated: Creator Crawler Copier

Demonstration Files are available from:
http://dec.bournemouth.ac.uk/staff/mjones/Teaching/assignments.php?assignment=2&unit=C
omputing-C-Programming

The application compiles without errors: 0 / 1 / 2

The application executes and produces no errors: 0 / 1 / 2

The application produces the required output:

Creator: directory + filesCreated.txt + different last modified times 0 / 1 / 2 / 3 / 4
Copy the demonstration words.txt file
java <app> Berners-Lee

Crawler: archive.txt + copy.txt 0 / 1 / 2 / 3 / 4
Copy + unzip the example demonstration zip file
java <app> Berners-Lee 2006-01-24 html

Copier: files in archive.txt copied to archive + same for copy.txt 0 / 1 / 2 / 3 / 4
Copy + unzip the example demonstration zip file
Copy + unzip the demo archive and copy zip file
Copy the archive.txt and copy.txt to Berners-Lee
java <app> Berners-Lee java do

The student is able to identify and explain the purpose of FOUR concepts: 0 / 1 / 2 / 3 / 4

List: constructor / Open output file / loop / method

JavaDoc comments on methods, classes 0 / 1 / 2 / 3 / 4

The JavaDoc files are available: 0 / 1 / 2 / 3 / 4

Michael Jones Disciplinary Commons Portfolio - June2006 Page 36
Bournemouth University

http://dec.bournemouth.ac.uk/staff/mjones/Teaching/assignments.php?assignment=2&unit=Computing-C-Programming
http://dec.bournemouth.ac.uk/staff/mjones/Teaching/assignments.php?assignment=2&unit=Computing-C-Programming

Appendix H: Example of feedback given to students

Student written feedback

Student Oral Feedback

Michael Jones Disciplinary Commons Portfolio - June2006 Page 37
Bournemouth University

http://c1162921.mp3/
http://c1162921.pdf/

Appendix I: Unit Monitoring Form

Michael Jones Disciplinary Commons Portfolio - June2006 Page 38
Bournemouth University

Michael Jones Disciplinary Commons Portfolio - June2006 Page 39
Bournemouth University


UNIT MONITORING REPORT

 Programming

Unit Title Unit Reference


Michael Jones DEC

Unit Leader School Partner Institution

 2005-06

Academic Year

Programme(s) in which unit is offered
 Computing Undergraduate Framework

Key strengths and issues arising from student performance

Key strengths and issues in student feedback

Key strengths and issues arising from other unit monitoring data (including any specific references in an External Examiner's feedback)

Michael Jones Disciplinary Commons Portfolio - June2006 Page 40
Bournemouth University

UNIT MONITORING REPORT

Actions for improvement in next year / cycle of delivery

Other comments

Signature of Unit Leader Date

Received by Programme Leader Date

Appendix J: Student Feedback Questionnaire

Michael Jones Disciplinary Commons Portfolio - June2006 Page 41
Bournemouth University

	1.Portfolio Objective
	2.Abstract
	3.Bournemouth University
	3.1The Current Climate

	4.The School of Design, Engineering & Computing
	4.1Programmes in the School

	5.University Facilities
	5.1Usage
	5.2Lecture Theatres
	5.3Programming Laboratories
	5.4Library and ICT support
	5.4.1Network Performance

	5.5Recreational

	6.My Background in Computing and Teaching
	6.1Beliefs About Programming

	7.The Computing Undergraduate Framework
	8.The Programming Unit
	8.1Paradigm
	8.1.1Why Java?

	8.2The Role of the Unit in the Framework
	8.3My immediate background in teaching programming
	8.4Unit Specification
	8.5Unit Specification Commentary
	8.6VLE
	8.7Support software

	9.Pedagogy
	9.1When to introduce Objects?

	10.Instructional Design
	10.1Lectures
	10.1.1Interaction
	10.1.2Feedback

	10.2Programming Laboratory sessions
	10.2.1Weekly worksheets
	10.2.2Multiple choice

	11.Assessment
	11.1Assessment regime
	11.1.1Rationale for Examination
	11.1.2Coursework

	11.25 Beliefs About (Summative) Assessment
	11.3Individual or Group?
	11.4Formative assessment
	11.4.1Lesson Tests

	11.5Sample Summative assessment
	11.5.1How the beliefs realised in the sample assignment?

	11.6Providing Feedback
	11.6.1Written
	11.6.2Oral
	11.6.3Availability of Feedback

	12.Feedback on the Performance of the Unit
	12.1University mechanisms
	12.2Programme mechanisms
	12.2.1Intermediate questionnaire
	12.2.2Course tutorials

	13.Reflections
	13.1The Environment
	13.1.1University
	13.1.2School
	13.1.3Programme
	13.1.4The University Experience for Students

	13.2The Unit
	13.2.1Overall
	13.2.2What has gone well?
	13.2.3What has gone badly?
	13.2.4Did the Delivery Plan Work?
	13.2.5What is Excellent about the delivery?
	13.2.6What innovations are there?
	13.2.7What changes will be made?

	13.3My Performance

	14.Final Thoughts
	Appendix A: The University
	Appendix B: Unit Descriptor
	Appendix C: Unit (Delivery) Guide
	Appendix D: Weekly Worksheet Example
	Appendix E: Sample multiple choice questions
	Appendix F: Sample Summative Assignment
	School of Design, Engineering & Computing
	Introduction
	Demonstration

	Appendix G: Demonstration Checklist
	Appendix H: Example of feedback given to students
	Appendix I: Unit Monitoring Form
	Appendix J: Student Feedback Questionnaire

